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1 Epistasis at the individual versus population level

Here we derive the relationship shown in Fig S1C between epistasis at the individual level,
which is dictated by the shape of the landscape where the individual resides, and popula-
tion level, which is dictated by a planar fit to the landscape, weighted by the population
distribution, i.e. linear regression.

1.1 Linear regression: general formulation

We begin by reviewing linear regression, e.g. (Lynch and Walsh, 1998; Ross, 2009; Neher
and Shraiman, 2011). We perform the calculations in the asymptotic limit of a large sample
size, i.e. we are not interested in stochastic variation in parameter estimates due to finite
sample size.

Let Z(~x) describe the dependence of a quantitative trait on a set of genetically encoded
quantitative input values ~x = (x, y), e.g., gene expression levels; for the sake of clarity of
exposition we do not model environmental effects. From the function Z(~x) we can construct

a random variable Z( ~X) whose distribution depends on the probability density of gene values

in the population P ( ~X = ~x) = p(~x).
Narrow-sense heritability is

h2pop∗ =
σ2
A

σ2
(S1)

where σ2 = var(Z), σ2
A is the variance of a linear model of the true phenotypic landscape,

ZA(~x) = α + βxx+ βyy, (S2)

and the asterisk in h2pop∗ reminds us that we are not considering environmental effects. The
coefficients of the linear model are determined by minimizing the population average of the
random residual

σ2
I = 〈∆2〉 =

∫
d~xp(~x)∆2(~x), (S3)

where the residual is defined by

∆( ~X) = ZA( ~X)− Z( ~X). (S4)

Minimization with respect to α yields 〈∆〉 = 0. This has two consequences. First, the optimal
value of α is given by

α = 〈Z〉 − βx〈X〉 − βy〈Y 〉. (S5)

Second, when α is optimal, we have the relation

σ2
I = var(∆), (S6)

implying that the least-squares optimization procedure minimizes the spread about the re-
gression plane and therefore maximizes the amount of variation in Z that can be explained
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by a linear combination of the input values. Minimization with respect to βa yields

βa =
χazχa a − χaaχaz
χxxχyy − χ2

xy

, (S7)

where (a, a) = (x, y) or (y, x) and χxy = cov (X, Y ), etc. It turns out that the residuals
around the least-squares regression are uncorrelated with X and Y ,

cov (X,∆) = cov (Y,∆) = 0. (S8)

Notice, however, that the residual ∆ may still depend on X, e.g. if Z is a nonlinear function
of X. Using Eqs. (S6) and (S8), which are valid when the coefficients of the linear model
are optimal, and the definition in Eq. (S4), the total variance can be decomposed as follows

σ2 = σ2
A + σ2

I . (S9)

The variance not accounted for by the linear model, σ2
I , is variously called “epistatic vari-

ance”, “interaction variance” and “statistical epistasis”, and is a measure of epistasis at the
population level.

1.2 Linear regression: special case

Consider a genetic architecture defined by an inhomogeneous polynomial phenotype

Z(~x) = C

[
x+ y +

(xy)n

ξ2n−1

]
(S10)

and an exponential gene-value distribution

p(~x) =
1

λ2
e−(x+y)/λ. (S11)

The amplitude of the phenotypic landscape in Eq. (S10) is dictated by a constant C, while
ξ represents the scale at which the landscape transitions from purely planer to purely syn-
ergistic, as reflected in the shape profile

hind∗(x, x|0, 0) =
2Z(x, 0)

Z(x, x)
=

2

2 + (x/ξ)2n−1
. (S12)

Again, the asterisk reminds us that we are not considering environmental effects. (Notice
that hind∗ = h2pop∗ = 1 when Z is a plane.) According to the genotype distribution, Eq. (S11),
the random variables X and Y are independent, which has been shown to be a reasonable
assumption when h2pop∗ is high (Neher and Shraiman, 2011). Using the “length” scale, λ,
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defining the genotype distribution, we renormalize all variables as follows

~̂x = ~x/λ (S13)

Ẑ(~̂x) = Z(~x)/ζ (S14)

p̂(~̂x) = λ2p(~x). (S15)

where ζ = Z(λ, λ). Notice that the renormalized probability density is normalized,∫
d~̂x p̂(~̂x) = 1, (S16)

as it should be. Writing ĥind∗ = hind∗(λ, λ|0, 0), we may cast the renormalized phenotype as

Ẑ(~̂x) =
1

2
ĥind∗ (x̂+ ŷ) +

(
1− ĥind∗

)
(x̂ŷ)n . (S17)

The renormalized phenotype has the following properties

Ẑ(1, 0) = Ẑ(0, 1) =
1

2
ĥind∗ (S18)

Ẑ(1, 1) = 1. (S19)

How is linear regression in the two spaces (i.e. bare versus renormalized variables) related?
To approach that question, notice that the values of α and βa (a = x, y) that minimize σ2

I

also minimize

σ̂2
I = σ2

I/ζ
2 (S20)

=

∫
d~̂x p̂(~̂x)

[
ẐA(~̂x)− Ẑ(~̂x)

]2
, (S21)

where
ẐA(~̂x) = ZA(~x)/ζ = α̂ + β̂xx̂+ β̂yŷ (S22)

and

α̂ = α/ζ (S23)

β̂a = βaλ/ζ, (S24)

which tells us how the regression coefficients in the two spaces are related. It follows that

σ̂2
A = var(ẐA) = σ2

A/ζ
2. (S25)

Using the relation C = ζ
λ
1
2
ĥind∗ we may also show that

σ̂2 = var(Ẑ) = σ2/ζ2. (S26)
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It follows immediately that

ĥ2pop∗ =
σ̂2
A

σ̂2
= h2pop∗. (S27)

It follows that h2pop∗ depends on the parameters ξ and λ only through the shape of the land-

scape on the length scale defined by the population, ĥind∗, as confirmed by direct numerical
calculations of h2pop∗ for a variety of values of ξ and λ (circles in Fig S1C; ζ = 1; n = 2).
Using the formulae in Section 1.1, one can show that the scaling curve is defined by

σ̂2
A = 2

[
1

2
ĥind∗ + (1− ĥind∗) (n!)2 n

]2
(S28)

σ̂2 =
1

2
ĥ2ind∗ + 2ĥind∗(1− ĥind∗) (n!)2 n+ (1− ĥind∗)2

[
((2n)!)2 − (n!)4

]
, (S29)

which is the line in Fig S1C.

2 Distribution of gene-values in case-control studies

In case-control studies, the proportion of the sample that are cases (i.e. Z > zt, for some
phenotype threshold zt) is usually much larger than the prevalence in the population. Does
the resulting enrichment for case genotypes, which are expected to have the greatest levels of
functional epistasis, 1−hind∗, significantly increase statistical epistasis, 1−h2pop∗? To address
this, we need the population distribution within the case-control sample, which is defined by

pcc(~x) = P ( ~Xcc = ~x) (S30)

= (1−Kcc)P ( ~X = ~x|Z( ~X) < zt) +KccP ( ~X = ~x|Z( ~X) > zt) (S31)

where Kcc is the prevalence of disease in the case-control sample. The conditional probabili-
ties can be written in terms of the disease prevalence in the population, K = P (Z( ~X) > zt).
For example,

P ( ~X = ~x|Z( ~X) > zt) =
P ( ~X = ~x, Z( ~X) > zt)

P (Z( ~X) > zt)
(S32)

=
p(~x)

K
θ(Z(~x) > zt), (S33)

where θ is the unit step function. In summary,

pcc(~x) =
1−Kcc

1−K
p(~x)θ(Z(~x) < zt) +

Kcc

K
p(~x)θ(Z(~x) > zt). (S34)

Notice two things. First, P (Z( ~Xcc) > zt) = Kcc, as it should. Second, Xcc and Ycc are
not independent since pcc(x, y) 6= pcc(x)pcc(y).
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3 Random-walk approximation of evolution

The evolution of a sufficiently small population can be mapped to a random walk. To see
this, consider an initially monomorphic population, in which all N individuals have the
same set of “input values” or “genotype”. As a result of mutation (that occurs at rate
µ per individual per gene per generation), the population becomes subdivided into sub-
populations with different genotypes (i.e. it becomes polymorphic). When the population is
small (Nµ ≤ 1, as is the case in humans (Hartl and Clark, 2007, p165)), there are only a few
such sub-populations, with each “drifting” in size until one “fixes” or “substitutes” while
the others “extinguish”. At that point, the population is again monomorphic, but with a
new common genotype. We can thus approximate the population as a randomly walking
“particle”, which, upon arrival at a new position (genotype), builds up a “cloud” of minor-
frequency polymorphisms before jumping to the next position (van Nimwegen et al., 1999;
Poon and Otto, 2000; Berg et al., 2004; Sella and Hirsh, 2005; Bloom et al., 2006; Mustonen
and Lässig, 2009; Serohijos et al., 2012).

3.1 Evolution on the LP fitness landscape

On the LP fitness landscape, strong selection quickly drives the particle (and its cloud) to
a point of high fitness, after which it wanders slowly along a one-dimensional, relatively flat
“ridge” (Fig. S3A). When gene interaction is weak, k � 1, the ridge is curved (Fig. S3A).
In this regime, the particle “tacks”: it moves along the ridge by alternate mutations in the x
and y loci. Since this complication affects only the dynamics, and not the equilibrium, which
is our primary concern, we did not explicitly model the weak interaction regime. When gene
interaction is strong, k � 1, the ridge is comprised of two straight “arms”, that intersect
at a “corner”. In this regime, mutations in one of the genes moves the particle along the
corresponding arm (Fig. S3B).

The effect of phenotypic noise is to assign to the particle a fitness value randomly sampled
from the particle’s immediate vicinity. Provided sampling is much faster than the rate at
which the particle jumps, we hypothesized that the particle’s dynamics are governed by the
space-averaged fitness. It turns out that, in the strong interaction regime, the profile of this
“effective fitness” along the horizontal arm, we(x), is graded, biasing the random walk of the
particle towards the corner (Fig. S3C).

3.2 Master equation of the random walk

Here we describe mathematically how we modeled the random walk along the horizontal
arm (strong interaction regime; k � 1). When the population-wide mutation rate is small,
Nµ � 1, a new mutation likely extinguishes or fixes before the next mutation occurs,
implying that the population consists of at most one mutant sub-population at any one
time. In this regime, two things must happen for a particle, initially located at gene value
x′, to jump to gene value x. First, a mutation that alters the gene value in this way must
occur in some individual; let g(x|x′) be the corresponding probability density that the value
of the mutant allele is x, given that the gene’s value prior to the mutation was x′. Second, the
mutant individual must fix in the population, the probability of which we denote by ρ(x|x′).
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Thus, like the Metropolis-Hastings algorithm in statistical physics, the particle jumps only if
a move is both proposed (by mutation) and accepted (by fixation). Therefore, the probability
density per mutation that the particle, initially at x′, jumps to x is

ψ(x|x′) = δ(x− x′) [1− a(x′)] + g(x|x′)ρ(x|x′), (S35)

where

a(x′) =

∫ ∞
−∞

g(s|x′)ρ(s|x′)ds. (S36)

The coefficient of the delta function in Eq. (S35) is the probability that the proposed move
is rejected. Representing mutations by a Poisson process with rate Nµ, the transition prob-
ability density per unit time (van Kampen, 2007, p96) is

W (x|x′) = Nµψ(x|x′). (S37)

The probability P (x, t) that the particle is at x at time t is then governed by the master
equation

∂tP (x, t) =

∫ ∞
−∞

dx′ {W (x|x′)P (x′, t)−W (x′|x)P (x, t)} . (S38)

3.3 Diffusion approximation

The master equation, Eq. (S38), cannot be solved analytically. We must therefore resort to
an approximation that is mathematically tractable. One such approximation is called the
“diffusion approximation”. Though excellent, the textbook presentation of this approxima-
tion (van Kampen, 2007, ch 11) contains flaws that hinder our use of it. Next, we present a
correct derivation of the diffusion approximation of the master equation, Eq. (S38), suitable
for our purposes.

3.3.1 General stochastic process

Our goal is to rewrite the master equation, Eq. (S38), as a power series expansion in a
system-size parameter Ω. The parameter Ω creates a distinction between two scales. One
scale is determined by the size of the jumps, 1/Ω, and will be denoted by the “extensive”
variable X; the other scale is the one on which macroscopic properties of the system are
measured and is indicated by the “intensive” variable x = X/Ω. Following van Kampen, we
write the transition probability density per unit time as

W (x|x′) = f(Ω)

{
Φ0(x

′;R) +
1

Ω
Φ1(x

′;R) + · · ·
}
, (S39)
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where R = X − X ′. Substituting this expression for W (x|x′) into the master equation,
Eq. (S38), and changing the variable of integration from x′ to R, we get

∂tP (x, t) =
f(Ω)

Ω

∫ ∞
−∞

dR

{
Φ0(x−

R

Ω
;R) + · · ·

}
P (x− R

Ω
, t)

−f(Ω)

Ω

∫ ∞
−∞

dR {Φ0(x;−R) + · · · }P (x, t).

(S40)

Taylor expanding the first integrand in the jump size, 1/Ω, we get

∂tP (x, t) = −f(Ω)

Ω2
∂x

{
α10(x) +

1

Ω
α11(x) + · · ·

}
P (x, t)

+
1

2

f(Ω)

Ω3
∂2x

{
α20(x) +

1

Ω
α21(x) + · · ·

}
P (x, t),

+ · · · ,

(S41)

where the “jump moments” are given by

ανλ(x) =

∫ ∞
−∞

dRRνΦλ(x;R). (S42)

3.3.2 Random walk

To apply the diffusion approximation to the random walk, we must cast its transition proba-
bility, Eq. (S37), in the power-series form of Eq. (S39). To this end, we write the distribution
of mutational effects as

g(x|x′) =
1

2

1

σµ
I−1,1(R), (S43)

where the natural logarithm of the difference in gene values, x−x′ = Rσµ, is written in units
of a mutation effect size, σµ (see Fig. S3D), and the indicator function Ia,b(R) is defined to
be 1 if R ∈ [a, b] and 0 otherwise. On this scale, the delta function in Eq. (S35) is

δ(x− x′) =
1

σµ
δ(R). (S44)

The fixation probability, considered as a function of the natural logarithm of gene value, x,
is Taylor expanded about x′

ρ(x|x′) = ρ(x′|x′) +Rσµ ∂sρ(s|x′)|s=x′ + · · · (S45)

Substituting Eqs. (S43) and (S45) into Eq. (S36) and changing the integration variable from
s to R = (s− x′)/σµ, one gets

a(x′) = ρ(x′|x′) +
1

6
σ2
µ ∂

2
sρ(s|x′)

∣∣
s=x′

+ · · · (S46)
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Substituting Eqs. (S43), (S44), (S45) and (S46) into Eqs. (S35) and (S37), and comparing
the resulting power series in σµ with the corresponding power series in 1/Ω, Eq. (S39), we
infer that, for the random walk,

f = Nµ/σµ (S47)

Φ0(x
′;R) = δ(R) (1− ρ(x′|x′)) +

1

2
I−1,1(R)ρ(x′|x′) (S48)

Φ1(x
′;R) =

1

2
RI−1,1(R) ∂sρ(s|x′)|s=x′ (S49)

Substituting Eq. (S48) into Eq. (S42), we find that α10 = 0, which implies that the master
equation of the random walk is of the “diffusion type” (van Kampen, 2007, ch 11) and the
lowest order approximation arising from Eq. (S41) is a Fokker-Planck equation:

∂tP = fσ3
µ

{
−∂xα11P +

1

2
∂2xα20P

}
. (S50)

(Notice that this expression for the diffusion approximation differs by a factor of Ω = 1/σµ
from the textbook version (van Kampen, 2007, Eqs. (1.5) and (1.6) on p274).) The prefactor
on the right-hand side of the Fokker Planck equation is fσ3

µ = Nµσ2
µ, while, under the Moran

model of fixation (see Section 3.3.3), the jump moments are

α11(x) =
1

3
∂sρ(s|x)|s=x =

1

6

N − 1

N

d lnwe(x)

dx
(S51)

α20(x) =
1

3
ρ(x|x) =

1

3

1

N
. (S52)

The Fokker Planck equation may therefore be written

∂τP (x, τ) = −∂x [v(x)P (x, τ)] + ∂2xP (x, τ), (S53)

where x is the natural logarithm of gene value, our new time variable is

τ =
1

6
µσ2

µt, (S54)

and the “velocity field” is

v(x) = (N − 1)
d lnwe(x)

dx
. (S55)

The steady-state solution is the Boltzmann distribution (Berg et al., 2004; Sella and Hirsh,
2005; Mustonen and Lässig, 2009)

P (x) ∝ e(N−1) lnwe(x) = we(x)N−1. (S56)

3.3.3 Moran model of fixation

Here we show how the jump moments in Eqs. (S51) and (S52) were calculated. Suppose that
the population contains n mutant individuals, each with effective fitness we, and N −n wild
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type individuals, each with effective fitness w′e. In any one time step, a random individual
is chosen for reproduction in proportion to his fitness (and then replaced) and a random
individual is chosen for elimination (without regard to fitness). The probabilities that, in
the next time step, the number of mutants will be n− 1, n or n+ 1 are

pn→n−1 =
n

N

w′e(N − n)

wen+ w′e(N − n)
(S57)

pn→n = 1− pn→n−1 + pn→n+1 (S58)

pn→n+1 =
N − n
N

wen

wen+ w′e(N − n)
(S59)

respectively. This is a birth-death process, for which the probability of reaching the state
where all individuals are mutant, conditioned on starting with just one mutant, is (Nowak,
2006, p99, Eq. (6.10)) {

1 +
N−1∑
j=1

j∏
n=1

pn→n−1
pn→n+1

}−1
=

1− w′e/we
1− (w′e/we)

N
, (S60)

which approaches 1/N as we → w′e. Written as a function of the natural logarithm of gene
value, x, and the effective fitness profile we(x), the fixation probability is

ρ(s|x) = h(r(s, x)), (S61)

where

h(r) =
1− r

1− rN
(S62)

r(s, x) = we(x)/we(s). (S63)

With regard to the “diffusion” jump moment, Eq. (S52), we immediately obtain (see Fig. S3E)

ρ(x|x) = 1/N. (S64)

With regard to the “advection” jump moment, Eq. (S51), we find that

∂ρ(s|x)

∂s

∣∣∣∣
s=x

=
dh

dr

∣∣∣∣
r=1

∂r(s, x)

∂s

∣∣∣∣
s=x

(S65)

=
1

2

N − 1

N

d lnwe(s)

ds

∣∣∣∣
s=x

. (S66)

4 Scaling argument for the LP model: w(s, σi) = f (sσ2
i )

Here, we show how the extended LP model depends on selection strength, s, and the level of
noise, σi, through the product sσ2

i , where by noise we mean either developmental (i = dev),
environmental (i = env) or mutational (i = µ). Eq. (2) of the main text shows that fitness,
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w, depends only upon s(ln z− ln zopt)
2. To the extent to which the phenotype, z, is equal to

one or the other gene level, x or y, the perturbation (ln z − ln zopt)
2 is either (lnx− lnxopt)

2

or (ln y − ln yopt)
2, each of which is a random variable with variance σ2

i (see Eq. (4) in main
text). Hence, to a first approximation, w depends only on sσ2

i .

5 Distribution of gene-values in a population at mutation-

selection balance

We generalized the LP landscape to allow for a fitness ridge cross section that various along
the optimal phenotype contour, both in terms of width and symmetry. On this generalized
landscape, survival of the flattest can trump survival of the curviest, driving populations
onto the arm and away from zones of high epistasis.

We wondered whether the shape of the population distribution of genes values could
distinguish survival of the curviest and survival of the flattest. On an arm, the population
distribution parallel to the arm is dictated mostly by mutation, which causes the population
to wander en masse along the arm. Perpendicular to the arm, mutations are balanced by
selection. We sought to model the resulting steady-state distribution of gene values in the
direction orthogonal to the arm.

Let’s model selection first. Let ρ(x, t)dx be the number of individuals in a large population
with allele value in the range (x, x+dx) at time t. Selection can be modeled in discrete time,

ρ(x, t+ 1) = w(x)ρ(x, t), (S67)

where w(x) is the Wrightian fitness, or in continuous time,

∂tρ(x, t) = m(x)ρ(x, t), (S68)

where
m(x) = lnw(x). (S69)

is the Malthusian fitness. We shall adopt the continuous-time formulation. Let p(x, t) denote
the relative frequency of allele x at time t, i.e. p(x, t) is the probability density

p(x, t) = ρ(x, t)/N(t), (S70)

where

N(t) =

∫ ∞
−∞

ρ(x, t)dx (S71)

is the total number of individuals in the population at time t. Differentiating Eq. (S70) with
respect to time and using the quotient rule yields

∂tp(x, t) = (m(x)−m(t)) p(x, t), (S72)
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where m(t) is the population mean fitness defined by

m(t) =

∫ ∞
−∞

m(x)p(x, t)dx. (S73)

.
Next, consider the effect of mutations. Let µ be the mutation rate per individual and

g(x|x′) be the probability density that an individual changes its allelic value from x′ to x
upon mutation. Then the mutation influx to allele value x is

∂tp(x, t) =

∫ ∞
−∞

g(x|x′) · µ · p(x′, t)dx′, (S74)

while the mutation outflux is

∂tp(x, t) = −
∫ ∞
−∞

g(x′|x)dx′ · µ · p(x, t) (S75)

= −µp(x, t). (S76)

Adding Eqs. (S72, S74, S76) gives an integro-differential equation that governs the pop-
ulation distribution of gene values subject to the forces of selection and mutation,

∂tp(x, t) = (m(x)−m(t)) p(x, t) + µ

(∫ ∞
−∞

dx′g(x|x′)p(x′, t)− p(x, t)
)
. (S77)

This equation was first derived by Kimura to describe mutation-selection balance in the
“continuum-of-alleles” model (Kimura, 1965). He investigated the steady-state solution un-
der the assumptions that (1) fitness decreases quadratically from the optimum, m(x) = −x2
(i.e. a Gaussian Wrightian fitness profile), and (2) production of new mutants follows a
Gaussian density,

g(x|x′) =
1

σµ
√

2π
e
− x2

2σ2µ . (S78)

With these assumptions, he approximated Eq. (S77) by a reaction-diffusion equation, yielding
a Gaussian solution at steady state (Kimura, 1965). Note though that this is not the exact
solution, which can differ significantly from normality under certain conditions (Burger,
1986).

6 Epistasis, orientation and curvature

6.1 An expression for the maximum potential for functional epis-
tasis at any location on a phenotypic landscape

If we refer to the values associated with a pair of genes as x and y, and the phenotypic surface
as z = f(x, y), then for any pair of perturbations, δx and δy, to x and y, respectively, the
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fraction of the phenotypic change explained by epistasis may be written as

1− hind* =
f(δx + x, δy + y)− f(δx + x, y)− f(x, δy + y) + f(x, y)

f(δx + x, δy + y)− f(x, y)
.

Assuming δx and δy are small, we may use a Taylor Series expansion of f around x, y, or
both together, to represent f(x+ δx, y), f(x, y+ δy) and f(x+ δx, y+ δy) in terms of partial
derivatives of f. In so doing, we simplify the above expression to

1− hind* =
δxδyfxy + · · ·

δxfx + δyfy + δxδyfxy + · · ·
, (S79)

where “· · · ” refers to the higher order terms of the expansion.
We want to obtain a measure of epistasis that is not a function of the particular choices

of δx and δy, but rather characterizes the general behavior at a particular location on a
phenotypic landscape. One way to do this is to divide the above expression by the “average”
mutational size, and then find the limiting behavior as this size goes to zero. In effect, we are
asking how much epistasis is associated with a pair of infinitesimally small perturbations,
relative to the average perturbation size. There are a number of ways we could represent the
“average” perturbation size, but here we will use a root-mean-square of δx and δy, which we
will call δ:

δ =

√
δx2 + δy2

2
. (S80)

We will introduce a new parameter,

ϕ =
δy

δx
, (S81)

which quantifies the relative magnitudes of the x and y perturbations. If perturbations to x
and y go in the same direction, ϕ is positive; if not, ϕ is negative. If perturbations are of
the same absolute magnitude, |ϕ| = 1. Dividing 1− hind∗ by δ and taking the limit as δ →
0 (upon which all of the higher order terms in the Taylor series expansion vanish), gives

lim
δ→∞

1− hind*
δ

= ±
√

2ϕfxy√
1 + ϕ2 (fx + ϕfy)

. (S82)

Since we are only interested in the absolute value of this quantity, which we shall call E , the
sign information here is irrelevant, and thus we have

E =

∣∣∣∣∣∣
√

2fxy√
1 + ϕ2

(
1
ϕ
fx + fy

)
∣∣∣∣∣∣ . (S83)

Now in considering any given system, we note that the units in which x and y are
expressed are arbitrary. We may always choose those units so that the absolute magnitudes
of perturbations in x and y are equal; we simply need to express f in terms of the same
units. Then ϕ equals either 1 or -1. Thus, letting F represent the function f defined in
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terms of the appropriate units of x and y, we get that epistasis, E , can be either of∣∣∣∣ Fxy

Fy + Fx

∣∣∣∣ , ∣∣∣∣ Fxy

Fy − Fx

∣∣∣∣ (S84)

depending upon the direction of the perturbations relative to each other. It can be shown
that the maximum of these two expressions is always equal to

Emax =

∣∣∣∣ Fxy

|Fy| − |Fx|]

∣∣∣∣ . (S85)

That is, Emax(x, y) is the maximum possible epistasis at the location (x, y).
On the other hand, in many biologically relevant scenarios, we are primarily concerned

with landscapes on which we consider only perturbations to x and y that produce changes
in the same direction, i.e. fxδx has the same sign as fyδy, hence 1

ϕ
fx has the same sign as

fy. Under these conditions, ∣∣∣∣ 1ϕfx + fy

∣∣∣∣ =

∣∣∣∣ 1ϕ
∣∣∣∣ |fx|+ |fy| , (S86)

and Eq. (S83) reduces to

E∗ =

∣∣∣∣ Fxy

|Fy|+ |Fx|

∣∣∣∣ , (S87)

where again F represents the function f defined in terms of the appropriately chosen units
of x and y. Note that it is always the case that

Emax > E∗ ≥ 0. (S88)

As we shall see below, it is also useful to have a third definition of functional epistasis,

Ê∗ =
|Fxy|√
Fy2 + Fx2

, (S89)

which is simply the absolute value of the mixed derivative of F normalized to the magnitude
of the gradient of F . Note that since

|a|+ |b| <
√
a2 + b2 <

√
2(|a|+ |b|) ∀ a and b, (S90)

Ê∗ is bounded below by 1√
2
E∗ and above by E∗. Thus Ê∗ is a reasonably good estimator of

E∗, and the more different the absolute values of Fx and Fy, the better an estimator it is.

6.2 The relationship between epistasis and orientation

For a phenotypic surface z = F (x,y), then the Optimal Fitness Countour (OFC) is the x-y
curve defined by F (x,y) = zopt, where zopt is a constant representing the “optimal” phenotype.
The slope of the OFC may be related to the partial derivatives of the phenotypic surface F
at the (x,y) points that lie along the OFC, according to the relationship y′(x) = −Fx/Fy.

15



Accordingly, the notion of the “orientation” of the OFC, as described in the main text, is
equivalent to a measure of the relative magnitudes of Fx and Fy. A diagonal orientation
means |Fx| ≈ |Fy|. Horizontal and vertical orientation correspond to |Fy| � |Fx| and
|Fy| � |Fx|, respectively.

For landscapes in which “fall-off” does not vary significantly as one moves small distances
along the OFC (i.e. fall-off is relatively uniform, as in Fig. 7B), epistasis at corners is expected
to be zero for horizontal and vertical orientations but non-zero for a diagonal orientation:
When the orientation of the corner is vertical, small changes to y produce no change in F ,
i.e. Fy = 0 at the corner. Having fall-off be uniform, i.e. locally independent of distance
along the contour, implies that neighboring phenotype contours are locally parallel to the
corner under consideration. A consequence of this is that Fy is invariant to changes in x,
i.e. Fyx = Fxy = 0. A similar argument can be made for horizontally oriented corners using
Fx to arrive at the identical conclusion. In contrast, at corners that are not horizontal or
vertical, on landscapes with uniform fall-off, Fy will generally depend on x and Fx will depend
on y, so that, in general, Fxy will be non-zero. Since Fxy serves as the numerator for both
Emax and E∗, we conclude that Emax = E∗ = 0 at horizontally or vertically oriented corners,
whereas these measures of epistasis are generally non-zero at diagonally oriented corners.

It is also apparent that, for exactly diagonal orientation, Emax →∞, whereas E∗ does not.
This is a consequence of our defining epistasis as the ratio between the phenotypic change
when x and y are both perturbed to the phenotypic change predicted by the sum of the
individual effects of perturbing x and y. If those individual perturbations happen to have
exactly opposite effects, the phenotypic change predicted by their sum will be zero, so any
phenotypic effect of perturbing them together will correspond to infinite epistasis. This
is one reason why, as discussed above, E∗ may sometimes be more biologically useful than
Emax, even though the former only applies to a subset of the cases of gene-gene interaction
included in the latter. It should also be noted that, as orientation moves away from the
diagonal Emax and E∗ approach each other.

6.3 The relationship between curvature and epistasis

We’ve noticed empirically that locations on the phenotypic landscape where the OFC is
highly curved are often associated with high epistasis. For any curve in the x-y plane that
is expressed parametrically as (x(t), y(t)), the curvature C (i.e. the inverse of the radius of
curvature) may be written as

C(t) =

∣∣∣∣∣x′(t)y′′(t)− y′(t)x′′(t)(x′(t)2 + y′(t)2)3/2

∣∣∣∣∣ . (S91)

By definition, along the OFC, F (x(t), y(t)) = zopt for all t, so the derivative of F with
respect to t must be zero. Taking the derivative with respect to t, gives us

y′(t)Fy + x′(t)Fx = 0. (S92)

Hence (as long as Fy 6= 0), y′(t) = −x′[t]Fx
Fy

. (If Fy = 0, then x ’(t) = −y′[t]Fy
Fx

, and if both Fx
and Fy are zero, then C is undefined). Next, taking the derivative of Eq. (S92) with respect
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to t gives us:

y’’(t) =
x′(t) (−Fy (Fxxx

′(t) + Fxyy
′(t)) + Fx (Fxyx

′(t) + Fyyy
′(t)))− FxFyx′′(t)

F 2
y

. (S93)

These expressions allow us to re-define C in terms of derivatives of F with respect to x and
y:

C =
|FyyFx

2 − 2FxFyFxy + Fy
2Fxx|

(Fy2 + Fx2) 3/2
(S94)

=

∣∣∣∣∣ −2FxFy
Fy2 + Fx2

Fxy√
Fy2 + Fx2

+
Fx

2

Fy2 + Fx2
Fyy√

Fy2 + Fx2
+

Fy
2

Fy2 + Fx2
Fxx√

Fy2 + Fx2

∣∣∣∣∣ .(S95)

We notice that C can be viewed as being the sum of three terms Fxy√
Fy2+Fx2

, Fyy√
Fy2+Fx2

, and

Fxx√
Fy2+Fx2

, weighted by three pre-factors −2FxFy
Fy2+Fx2

, Fx2

Fy2+Fx2
and Fy2

Fy2+Fx2
. The first of the three

terms is simply a signed version of Ê∗. The second two represent the second derivatives of
F with respect to x, and y, each normalized to the magnitude of the gradient of F. We shall
rename them Fyy and Fxx to denote the fact that they, like Ê∗, can be viewed as a scaled
measure of one of the second-order derivatives of F. The prefactors are most conveniently
expressed as functions of the angle θ, formed between the tangent line to the OFC and the
x-axis, i.e. y’(x) =−Fx/Fy= tan θ. Making this substitution, and taking note of the possible

signs of the signed version of Ê∗, we get

C =
∣∣∣2sin θcos θÊ∗ ±

(
sin2 θFyy + cos2 θFxx

)∣∣∣ . (S96)

This expression tells us that epistasis and curvature will correlate strongly with each other
whenever the term in the parentheses is small compared with the term before it. For this to
happen, two things must be the case.

First, θ cannot be too close to 0, π
2
, or π, i.e. the orientation of the OFC cannot be

horizontal or vertical. As we have already shown above, such orientations also minimize
epistasis. If the OFC has the optimal orientation, i.e. diagonal, then the above expression
reduces to

C =

∣∣∣∣Ê∗ ± 1

2
(Fyy + Fxx)

∣∣∣∣ . (S97)

From this we see that, in order for epistasis and curvature to correlate strongly, epistasis
should be larger than the average of Fyy and Fxx. When both things are the case (favorable

orientation and Ê∗ �
∣∣1
2

(Fyy + Fxx)
∣∣), curvature and epistasis will tend to correlate strongly

with each other.
In the most general sense, we may interpret these two conditions as statements about how

variation at genes x and y contributes to phenotype F. The first condition tells us that, in
order for epistasis to be strong, F should be similarly sensitive to both x and y (as opposed
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to being much more sensitive to one than the other). The second condition tells us that
curvature will be a good predictor of epistasis whenever the nonlinearity of the phenotypic
landscape derives more from the interaction between x and y, than from the independent
effects of x and y themselves.
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